1. Introduction

There is growing interest in the development of new full color emitting phosphor materials that combine thermal and chemical stability in air with high emission quantum yield at room-temperature. In order to fulfill the corresponding requirements in various application fields, many research papers on developing new up-conversion materials systems have been reported. Recently, research on rare earth ions doped up-conversion luminescence materials has received considerable attention because of the optical properties arising from the intra 4f transitions. Luminescent properties of lanthanides make them useful for applications in flat-panel display, solid-state laser, optics, telecommunication, temperature sensor, as light emitting diodes and in vitro and in vivo applications.1–9 Among others, special attention has been given to rare-earth doped hosts emitting in the visible range upon infrared excitation through up-conversion process.10–15 Co-doping with Yb3+ as sensitizer further increases the efficiency of the up-conversion process in rare earths through donor–acceptor processes like Tm3+, Ho3+, Er3+ ions.16–19 Combined Er3+/Yb3+ doped low phonon energy host matrices are of special interest, wherein the up-conversion process results in efficient blue, green and red emissions.20–22 The large spectral overlap between Yb3+ emission (2F5/2 → 2F7/2) and Er3+ absorption (4I15/2 → 4I11/2) is responsible for such efficient resonant energy transfer (ET) from Yb3+ to Er3+.

Among the up-conversion phosphor materials, pyrochlore titanate Y2Ti2O7 (YTO) has attracted attention due to its thermal stability, low phonon energy (∼712 cm−1), photocatalytic behaviour and high refractive index value (∼2.34).23–27 The optical band gap of host material Y2Ti2O7 is ∼3.7 eV. This wide band gap of the host reduces a quenching effect on the emission of Ln3+ ion. The Ln3+ ion doped phosphor gives colors in the blue, green and red regions. In particular, co-doping effects on Ln3+ emission is critically dependent on the structure of the host matrix, excited state absorption (ESA) and energy transfer (ET) between the f–f transitions of Er3+ and/or Er3+/Yb3+ combined system. Particularly owing to advances in IR sources, the up-conversion process green-red phosphors are of special interest. Therefore, systematic research on the synthesis mechanism, structure and resultant effects on phosphor characteristics is necessary and worthy of pursuit. Among the solution based synthesis methods the conventional solid-state reaction method is one of the most versatile and low cost techniques to prepare up-conversion phosphor materials. The major drawback in this method is that it is not easy to control the particle size and morphology at higher sintering temperatures.28 However, the...
sample prepared at higher temperature (~1200 °C) for long duration (~12 h) shows strong photoluminescence because of the fewer number of quenchers on the surface of the particles, which is due to the possibility of reduced dangling bonds on the particle surface. Recently, this problem in nanomaterials was reduced by annealing the as prepared sample at a higher temperature.29 Recently, Cheetham and his co-workers prepared Yb3+, Er3+ and Tm3+ co-doped \(\text{Y}_2\text{BaZnO}_3 \) phosphors at ~1200 °C and sintered them for several days. Samples show strong green, red, blue and white emission depending on the proportion of the rare earth ions.

It is interesting to see that these samples are excited at very low power (~25–90 mW mm\(^{-2}\)).29b,c Moreover, the preparation method of colloidal/hybrid nanoparticles by pulsed laser ablation (PLA) with lanthanide ion doped inorganic phosphor as the target is useful in various applications. Amans and his co-workers prepared nanoparticles using laser ablation (having a laser pulse energy between ~2–70 mJ) of doped oxides such as \(\text{Eu}_2\text{O}_3 \), \(\text{Eu}_3\text{Gd}_2\text{O}_3 \) and Ce:YAG in aqueous solution of 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (MEEAA). The size and number of particles is controlled by varying laser pulse energy and solvent.30 Moreover, Er3+/Yb3+ co-doped up-conversion materials have great ability to improve solar cell efficiency. The enhancement of solar cell efficiency using up- and down-conversion \(\text{Ln}_3^+ \) has been reported.29k,30b,c

Herein, we have prepared a \(\text{Y}_2\text{Ti}_2\text{O}_7 \) (YTO) and \(\text{Er}_x\text{Yb}_2-x-y\text{Ti}_2\text{O}_7 \) (EYYTO) system through the conventional solid state route and studied structural and optical properties of EYYTO. In particular, we illustrate an interesting approach to understand the mechanism of energy transfer from EYYTO (sensitizer) host to the dopants (activator) by incorporating the rare-earth ions (Er\(^{3+}\), Yb\(^{3+}\)) which have unique charge-transfer associated excited states in their host (YTO or EYYTO) matrices. Laser power dependence on up-conversion luminescence has been explained through an energy transfer mechanism between the absorbing host and the rare-earth emitters. Further, we have prepared a monodispersed colloidal solution of EYYTO employing laser ablation method and studied its emission and absorption spectra.

2. Experimental

2.1 Synthesis

\(\text{Y}_2\text{Ti}_2\text{O}_7 \) (YTO) and \(\text{Er}_x\text{Yb}_2-x-y\text{Ti}_2\text{O}_7 \) \((x = 1 \text{ and } y = 2 \text{ at%})\) (EYYTO) samples were prepared by the conventional solid state route. The starting materials used in the synthesis process were \(\text{Y}_2\text{O}_3 \) (99.99%, Alfa Aesar), \(\text{TiO}_2 \) (99.9%, Alfa Aesar), \(\text{Yb}_2\text{O}_3 \) (99.98%, Alfa Aesar) and \(\text{Er}_2\text{O}_3 \) (99.9%, Alfa Aesar). For typical synthesis of \(\text{Er}_x\text{Yb}_2-x-y\text{Ti}_2\text{O}_7 \) \((x = 1 \text{ and } y = 2 \text{ at%})\) phosphor, the stoichiometric composition of these were mixed in a ball mill agate mortar at the speed of 50 rpm for three hours using acetone as a mixing medium. This mixed system was transferred into an alumina crucible and heated to 1200 °C in ambient atmosphere at the rate of 2 °C min\(^{-1}\) for 6 h. This was allowed to cool at room temperature by natural processes. The mixture was ground using pestle mortar for 1 h; and pellets of 10 mm in diameter and 2 mm in thickness were prepared. The pellets were sintered at 1300 °C for 12 h. A similar process was used to prepare YTO sample. These samples were used further for the structural and optical characterizations.

2.2 Preparation of colloidal nanoparticles

Colloidal solution of the EYYTO powder was prepared via a liquid pulsed laser ablation method. The pellet of the EYYTO powder was immersed in the distilled water medium and the laser light with wavelength 355 nm (with pulse repetition rate 10 Hz, pulse width 6 ns and pulse energy ~ 80 mJ) was incident on the pellet. The laser beam was focused by a convergent lens with 15 cm focal length. The pellet was immersed in water nearly 5 mm underneath the air-water interface. The pellet was rotated and the spot size of the laser beam at the target surface was varied as ~1–2 mm in diameter by adjusting the distance between focusing lens and target of the sample during the process of ablation.

2.3 Characterization

X-ray diffraction (XRD) pattern was measured with a Rigaku mini-flex-II diffractometer using CuK\(_\alpha\) radiation (1.5404 Å) at 30 kV and 15 mA in the range 10 ≤ 2\(\theta\) ≤ 90° with a step size of \(\Delta 2\theta = 0.02°\). Fourier transform infrared (FTIR) spectrum of the sample was recorded using Shimazu spectrophotometer in the range from 600–400 cm\(^{-1}\). The small amount of sample was mixed with KBr (Sigma Aldrich, 99.99%) in 1 : 5 ratios and a transparent pellet was prepared. The Raman spectra of the YTO and EYYTO were measured with Renishaw micro-Raman spectrometer attached with 514.5 nm Ar\(^+\) laser as an excitation source. The photoluminescence (PL) spectra were recorded using iHR320 (Horiba Jobin Yvon) spectrometer equipped with R928P photon counting photomultiplier tube and a 976 nm diode laser with 2.4 W maximum power as an excitation source. The PL decay measurement for \(\text{Er}^{3+} \) ion at 548 nm band was carried out with ~976 nm diode source. The luminescence signal was interfaced to a 150 MHz digital oscilloscope (model no. HM 1507, Hameg Instruments). The decay time was determined using the method of non-linear square fit. The goodness of fit was judged on the basis of \(R^2\) value with method of non-linear square fit. The absorption spectrum of the sample was recorded by UV-Vis Perkin Elmer Lambda-35 spectrophotometer. The microstructure analysis was carried out by transmission electron microscope (TEM) employing JEOL operated at an accelerated voltage of 200 kV. A 355 nm radiation (third harmonic) from a pulsed Nd–YAG laser (Spotlight 600, Innolas, Germany) was used to prepare the colloidal solution nanoparticles.

3. Results and discussion

3.1 Structural analysis

3.1.1 XRD study. Fig. 1 shows the XRD patterns of YTO and EYYTO samples along with corresponding \(\text{hkl}\) planes. All the peaks are well matched with JCPDS card no. 42-0413. It clearly shows that samples are well crystalline with a face centered
cubic lattice structure. The average crystallite size of the sample were calculated using Scherrer’s formula,

\[D = \frac{k\lambda}{\beta_{hk\ell}\cos(\theta)} \]

where \(k = 0.89 \), \(D \) average crystallite size, \(\lambda \) wavelength of CuKα, \(\theta \) Bragg’s diffraction angle of the planes and \(\beta_{hk\ell} \) the corrected full width at half maximum (FWHM). For \(\beta_{hk\ell} \) correction, \(\beta_{\text{inst}} \) (FWHM due to instrument) is removed using Si standard. The average crystallite size of YTO and EYYTO samples were found to be \(\sim 87 \) and \(85 \) nm, respectively. The structure refinement of the samples was carried out using FullProf software. The peak profiles were modelled using Pseudo-Voigt function and background was described in terms of a six coefficient polynomial. The \(R_{wp} \) (weighted-pattern factor) and \(S \) (goodness-of-fit) parameters were used as numerical criterion of the quality of fit of calculated to experimental diffraction data. Fig. 2(a) and (b) show the Rietveld refinement of powder diffraction data of YTO and EYYTO samples. The Bragg reflections, difference in observed and calculated intensity are also shown in the figure itself. The fitting parameters obtained after refinement are listed in Table 1. It was found that the unit cell volume slightly decreased after Er\(^{3+}/Yb^{3+}\) doping in YTO. This may be due to small ionic radius of Er\(^{3+}/Yb^{3+}\) ions as compared to Y\(^{3+}\) ion. The diffraction patterns intensity of EYYTO was found to be slightly less than YTO samples which may be due to defects created in Er\(^{3+}/Yb^{3+}\)-doped YTO. Inset in Fig. 2(a) shows the expansion of typical Rietveld fitting to the experimental data of (222) plane between 30.4 to 31.1° and the three dimensional polyhedral representation of EYYTO sample is shown in inset of Fig. 2(b).

<table>
<thead>
<tr>
<th>Table 1 Parameters obtained after refinement of observed XRD data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
</tr>
<tr>
<td>(Y(x, y, z))</td>
</tr>
<tr>
<td>(Ti(x, y, z))</td>
</tr>
<tr>
<td>(O_1(x, y, z))</td>
</tr>
<tr>
<td>(O_2(x, y, z))</td>
</tr>
<tr>
<td>Angles((\alpha, \beta, \gamma))</td>
</tr>
<tr>
<td>Lattice parameters ((a))</td>
</tr>
<tr>
<td>Unit cell volume ((\AA^3))</td>
</tr>
<tr>
<td>(\chi^2)</td>
</tr>
<tr>
<td>(Y-O_1)</td>
</tr>
<tr>
<td>(Y-O_2)</td>
</tr>
<tr>
<td>(Ti-O_1)</td>
</tr>
<tr>
<td>(R_{wp})</td>
</tr>
<tr>
<td>(R_p)</td>
</tr>
</tbody>
</table>

In \(Y_2Ti_2O_7 \), 48\(f(O_1) \) site is tetrahedrally coordinated to two Ti and two Y cations while 8\(d(O_2) \) is linked with four Y cations, respectively. The third anionic site in the unit cell is 8\(b(O_2) \).
which is tetrahedrally coordinated with four Ti cations and generally found to be empty for perfectly ordered pyrochlore.

3.1.2 TEM study. TEM images of EYYTO phosphor and its laser ablated colloidal solution are shown in Fig. 3(a) and (c) along with the corresponding selected area electron diffraction (SAED) patterns in Fig. 3(b) and (d), respectively. An irregular spherical microsphere is observed. The SAED analysis was performed to confirm the crystallinity of the prepared material. The average particle size in colloidal solution was found to be ~100 nm.

3.1.3 FTIR study. FTIR spectrum of EYYTO is shown in Fig. 4. The absorption bands appeared at ~417, 436, 484, 494 and 573 cm\(^{-1}\) are related to Y–O\(_1\), Y–O\(_2\) and Ti–O, stretching vibrations.\(^{35}\) The band around 500 and 400 cm\(^{-1}\) are assigned to Y–O\(_1\) and Y–O\(_2\) stretching vibrations in the Y\(_2\)Ti\(_2\)(O\(_1\))\(_6\)O\(_2\) polyhedron of Y\(_2\)Ti\(_2\)O\(_7\). Chen \(et \ al.^{36}\) found the absorption bands of YTO sample at 573, 473 and 417 cm\(^{-1}\) which are assigned to Ti–O, Y–O, and Y–O, stretching vibrations, respectively. These are the main features of the titanate pyrochlore IR-spectra. These vibrations confirm the formation of Y\(_2\)Ti\(_2\)O\(_7\) structure.

3.1.4 Raman study. The Raman spectra of pure YTO and EYYTO samples are shown in the Fig. 5(a) and (b). Since the pyrochlore (A\(_2\)B\(_2\)O\(_7\)) is a superstructure of fluorite formed by ordering of A and B cations into uneven crystallographic sites and ordering of anions into three sites 48f(O\(_3\)), 8a(O\(_2\)) and 8b(O\(_2\)). Therefore, Raman spectroscopy provides the degree of disorder in pyrochlore and hence distinguishes between defects pyrochlore to fluorite structures. Raman spectroscopy is more sensitive to metal-oxygen vibrational modes in comparison to metal–metal vibrational modes. There are six Raman active modes found in A\(_2\)B\(_2\)O\(_7\) pyrochlores having space group (Fd3m, \(Z = 8\)). These modes arise due to vibration of oxygen at 48f(O\(_3\)) and 8a(O\(_2\)). A and B cations do not contribute to active Raman bands because they possess centrosymmetric symmetry with an inversion centre. At room temperature pure YTO shows the well known Raman bands of at ~212, 307, 515, and 710 cm\(^{-1}\) and very weak band near 800 cm\(^{-1}\). The active Raman bands in this compound to \(\Gamma_{\text{Raman}} = A_{1g} + E_g + 4T_{2g}\), the symbols represent the reducible group representation.\(^{37}\) Gupta and Brown\(^{38}\) calculated the active IR and the Raman bands for YTO sample and explained that number of IR and Raman active modes for this system are seven and six, respectively. The active Raman bands were \(A_{1g}, E_g\) and \(4T_{2g}\) while IR active is \(7F_{1u}\). Sanjuan \(et \ al.^{37}\) explained the characteristic modes of YTO pyrochlore observed at ~310 cm\(^{-1}\) which has the contributions from \(E_g\) and \(T_{2g}\) modes both. The bands at ~515 and 711 cm\(^{-1}\) correspond to \(A_{1g}\) mode of vibration and one of the \(T_{2g}\) mode of vibration, respectively. The \(A_{1g}\) frequency mode provides information about the force constant of YTO pyrochlore. The vibration of the TiO\(_6\) octahedra is responsible for the \(A_{1g}\) mode of vibration of YTO pyrochlore structure. The major contribution for this mode is mainly due to force constants associated
with O–Ti–O bending.39 Vanderborre et al.40 explained the Raman spectra of different stannates and titanates for the higher frequency\textsubscript{T2g} modes of vibrations. These higher\textsubscript{T2g} modes of vibrations occur due to the force constant of Ti–O bond in TiO\textsubscript{4} octahedra. Recently, Camacho et al.41 studied the Raman spectra of Er3+/Yb3+ doped hybrid materials and reported that the band situated near \(\sim 368 \) cm-1 is the metal oxygen (Yb–O) similar to the band at \(\sim 377 \) cm-1 of (Y–O) stretching vibration, while characteristic peaks of Er3+ ion are found in the range of \(\sim 500–580 \) cm-1 and also some small traces of Raman bands near \(\sim 620–680 \) cm-1 and \(\sim 780–900 \) cm-1 are observed. Some additional Raman modes with lower intensities are also observed due to local disorder and defects present in the pyrochlore lattice of EYYTO. Radhakrishnan et al.42 described the presence of local disordering and defects in Ca and Mo substituted Gd\textsubscript{2}Ti\textsubscript{2}O\textsubscript{7}. They reported that the disordering and defects present in the system distort the translational periodic arrangement of the lattice and hence allows the \(\kappa = 0 \) selection rule, which is the main cause of the occurrence of additional Raman bands with lower intensities in the EYYTO pyrochlore structure.

3.2 Up-conversion and pump power dependence study

Up-conversion (UC) is a nonlinear optical phenomenon in which light of higher wavelength near infrared or infrared (\textit{i.e.} NIR or IR) is converted into visible or UV (ultraviolet) light through multiphoton absorption and energy transfer (ET) processes.5 On excitation with 976 nm laser, a large number of bands starting from UV to Vis to NIR could be observed due to Er3+ ions. The bands appearing in the green and red regions are very intense and lie in the anti-stoke side of the pump beam. These bands are shown in Fig. 6. In order to understand the UC mechanism involved in the EYYTO system, we have analysed the pump power dependence of up-conversion fluorescence intensity. Emission spectra of EYYTO sample were recorded with \(\sim 0.4, 0.7, 0.8 \) and 1.7 W laser input power in the range of 350–900 nm (Fig. 6). Two prominent bands are observed due to up-conversion at \(\sim 524, 548 \) nm which are responsible for green emission situated in between 500–600 nm with maximum intensity at \(\sim 548 \) nm. These two bands arise due to \(^{2}\text{H}_{11/2} \rightarrow ^{4}\text{I}_{15/2} \) and \(^{4}\text{S}_{3/2} \rightarrow ^{4}\text{I}_{15/2} \) electronic transitions, respectively of the Er3+ ion. Also the band observed in the range 600 to 700 nm with maximum intensity at \(\sim 661 \) nm was assigned to the \(^{4}\text{F}_{9/2} \rightarrow ^{4}\text{I}_{15/2} \) transition. Moreover, peaks at \(\sim 380, 410 \) and 487 nm in near UV and blue region of the spectrum with low intensity which is well described in the inset (i) from 380–500 nm. These bands arise due to the electronic transitions namely, from \(^{6}\text{I}_{14} \rightarrow ^{4}\text{I}_{15/2} \), \(^{2}\text{H}_{4/2} \rightarrow ^{4}\text{I}_{15/2} \) and \(^{4}\text{F}_{5/2} \rightarrow ^{4}\text{I}_{15/2} \) of Er3+ ion on 976 nm excitation. Inset (ii) ranging from 750–900 nm, which are Stark splitting pattern \(^{4}\text{I}_{11/2} \rightarrow ^{4}\text{I}_{15/2} \) of Er3+ ion. The Stark splitting clearly demonstrates the highly crystalline nature of EYYTO phosphor. It is also observed that Stark splitting of the transition is less in low excitation power and becomes clearer with increasing power. The stark splitting patterns also suggest that Er3+ ions are situated in well located crystallite sites of face centered cubic pyrochlore.15 The levels are populated partially by direct absorption and partly through energy transfer from Yb3+ to Er3+ ions. Since, Er3+ has a poor absorption cross section (\(1.7 \times 10^{-21} \) cm2 \textit{i.e.} Yb3+ counterpart, which has very high absorption cross section (\(11.7 \times 10^{-21} \) cm2 \textit{i.e.} GSA) at 976 nm excitation.23 Generally, there are two possible processes namely, excited state absorption (ESA) and energy transfer (ET) up-conversion, responsible for up-conversion emission. In the context of ESA processes, the green and red emissions arising from the Er3+ ion can be explained on the basis of these two mechanisms, which are resulting from excitation at 976 nm. The Er3+ ion in its ground state absorbs the incident photons and is promoted to \(^{4}\text{F}_{9/2} \) excited state, whereas the absorption of the next photons of same energy, Er3+ ions is promoted to \(^{4}\text{F}_{7/2} \) level. The ions in \(^{4}\text{F}_{7/2} \) level decay through nonradiative channel via multi photon process to \(^{4}\text{H}_{15/2} \) and \(^{4}\text{S}_{3/2} \) levels. In the ET process, there is probability of two Er3+ ions excited to their \(^{4}\text{I}_{11/2} \) state \textit{via} ESA while the other \textit{via} GSA or one Er3+ ion is promoted to \(^{4}\text{I}_{15/2} \) level (GSA) and one Yb3+ ion in the \(^{2}\text{F}_{5/2} \) level (GSA). The Yb3+ ion transfers its energy to Er3+ to excite it to \(^{4}\text{I}_{11/2} \) level. The excited Er3+ ions in the \(^{4}\text{I}_{11/2} \) level exchange their energy and one decays to the ground state \(^{4}\text{I}_{15/2} \) and the other is promoted to \(^{4}\text{F}_{7/2} \) level. The ion in \(^{4}\text{F}_{7/2} \) level, \textit{via} nonradiative relaxation reaches to \(^{2}\text{H}_{11/2} \) and \(^{4}\text{S}_{3/2} \) levels. The \(^{4}\text{F}_{7/2} \) and \(^{4}\text{S}_{3/2} \) levels are populated \textit{via} ET and ESA processes. The resulting green emissions at lower levels are due to these \(^{2}\text{H}_{11/2} \rightarrow ^{4}\text{I}_{15/2} \) and \(^{4}\text{S}_{3/2} \rightarrow ^{4}\text{I}_{15/2} \) energy level transitions. The involved transitions of different emitting levels in the up-conversion process \textit{via} ESA and GSA along with GSA are schematically shown in the Fig. 8. Also, part of the ion in \(^{4}\text{F}_{9/2} \) can further relax and populate the \(^{4}\text{F}_{9/2} \) level leading to the \(^{4}\text{F}_{9/2} \rightarrow ^{4}\text{I}_{15/2} \) transition (red emission). The \(^{4}\text{F}_{9/2} \) level may also be populated from the \(^{4}\text{I}_{11/2} \) level of the Er3+ ion by absorption of a 976 nm photon, or by energy transfer from Yb3+ ion. The \(^{4}\text{I}_{11/2} \) state is initially populated \textit{via} the non-radiative \(^{4}\text{F}_{9/2} \rightarrow ^{4}\text{I}_{11/2} \) relaxation.44 As the energy gap between the \(^{4}\text{S}_{3/2} \) to \(^{4}\text{F}_{9/2} \) is quite large (\(\sim 3000 \) cm-1), the probability of

![Fig. 6](image-url) Emission spectra of Er3+/Yb3+ doped Y\textsubscript{2}Ti\textsubscript{2}O\textsubscript{7} phosphor under 976 nm excitation wavelengths at different pump powers (up-conversion). Insets (i) and (ii) show the expansion in 370–440 nm and 775–900 nm. Inset (left) shows the digital photograph of strong green band while the inset (right) shows the red band with the aid of suitable filters.
nonradiative relaxation is smaller while the second channel seems to contribute more effectively. A bright green up-converted light is emitted through $^4S_{3/2} + ^2H_{11/2} \rightarrow ^4I_{15/2}$ while a comparatively weak red emission is observed from $^4F_{9/2} \rightarrow ^4I_{15/2}$ levels. The involved mechanism in red band emission is as follows:

$$\begin{align*}
^2F_{7/2}(\text{Yb}^{3+}) & \xrightarrow{976\text{nm}} ^2F_{5/2}(\text{Yb}^{3+}) \\
^2I_{15/2}(\text{Er}^{3+}) & \xrightarrow{976\text{nm}} ^4I_{11/2}(\text{Er}^{3+}) \\
^4I_{11/2}(\text{Er}^{3+}) & \rightarrow ^4I_{13/2}(\text{Er}^{3+}) + \text{non-radiative process} \\
^2F_{5/2}(\text{Yb}^{3+}) + ^4I_{13/2}(\text{Er}^{3+}) & \xrightarrow{\text{ET}} ^2F_{7/2}(\text{Yb}^{3+}) + ^4F_{9/2}(\text{Er}^{3+}) \\
^2I_{13/2}(\text{Er}^{3+}) + \text{pump photon} & \xrightarrow{\text{ET}} ^4F_{9/2}(\text{Er}^{3+}) \rightarrow ^4I_{15/2}(\text{Er}^{3+}) + \text{red photon}
\end{align*}$$

The involvement of two photons is observed for the green (~524 and 548 nm) and red bands (~661 nm) emission, which is well supported by the n value obtained for these bands from Fig. 7(a). Similarly, the up-conversion mechanism channel can be explained for UV and visible bands i.e. for ~380, 410 and 487 nm and the involvement of three photons is observed for these bands which is shown in Fig. 7(b). As Er$^{3+}$ and Yb$^{3+}$ ions irradiated with 976 nm radiation and promoted to their excited states (GSA). Since, the absorption cross section of sensitizer (Yb$^{3+}$) is very much higher in comparison to (Er$^{3+}$), therefore most photons were absorbed by (Yb$^{3+}$) ions and transfers its energy to (Er$^{3+}$) ions via ET pathways. The absorption of second photon in excited state promotes the Er$^{3+}$ ions to $^2F_{7/2}$ and $^3S_{1/2}$ levels. A subsequent absorption of third photon promoted the Er$^{3+}$ ion to its $^4G_{7/2}$ levels. To understand the up-conversion influence of the observed luminescence, we have studied the intensity of the band with respect to pump power. The integrated band intensities near UV and visible region in variance with a function of laser excitation power which is shown in the Fig. 7. In the up-conversion mechanism, the emission intensities follow the relation as $I \propto P^n$, where I is the up-conversion intensity, P is the pump power; n is the number of NIR photons involved in the up-conversion. Number of photons n is obtained from slope of the straight line by fitting the bi-logarithmic plot of pump power versus emitted intensity. n Values obtained for 524, 548 and 661 nm bands are shown in Fig. 7(a) and the values of n obtained for ~380, 410 and 487 nm as shown in Fig. 7(b) were found to be ~2.83, 3.18 and 3.13, respectively. The slope of the curve at low pump power is linear, which is obvious from region (i) in the figure. As far as moderate power is concerned region (ii) shows quadratic behaviour and for higher pump power marked as region (iii) it shows saturation. Pollnau et al. proposed the model on power dependence behaviour of luminescence intensity and explained the slope value for different powers by solving the rate equations and reported that the up-conversion rate enhances for moderate power but for higher values of pump power it becomes almost constant. From the power dependence study, quadratic behaviour is observed for green and red bands while for ultraviolet and blue bands, involvement of three photons was observed. The characteristics emission intensities of green band over red is quite different from those earlier reported. Enhancement in
photoluminescence intensity was observed even at lower at% of Er$^{3+}$ and Yb$^{3+}$ concentration which demonstrates color tunability of the host material. Chen et al.15 has reported the up-conversion behaviour of Er$^{3+}$/Yb$^{3+}$ doped YTO with varying Yb$^{3+}$ concentration and observed the intense red emission. Recently, photoluminescence modification and energy transfer mechanism was reported by Yan et al.19 for up-conversion behaviour of tri-doped (Er$^{3+}$/Yb$^{3+}$/Tm$^{3+}$) Y$_2$Ti$_2$O$_7$ inverse opal. It was reported that the improvement in energy transfer occurred between Er$^{3+}$ and Tm$^{3+}$ at 980 nm excitation. Thus the intensity variation observed for the green and red bands is mainly due to energy transfer from (Yb$^{3+}$ to Er$^{3+}$). The maximum up-conversion intensity is observed for 1 at% Er$^{3+}$ and 2 at% of Yb$^{3+}$ ions. For higher atomic percentage of Er$^{3+}$, cross relaxation (CR) becomes dominant process and the luminescence quenches.

3.3 Variation of green-red ratio with input diode power

The variation of green to red intensity ratio as a function of excitation power is shown in the Fig. 9. This ratio increases as a function of the excitation power up to ~ 1.0 W revealing that green emission is dominant over red. As for the higher excitation powers i.e. at ~ 1.2 to 2.4 W, again green emission becomes dominant over the red. In order to understand the variation in the green to red ratio, we normalized the intensity of ~ 548 nm band and compared its intensity with the intensities of ~ 524 and 661 nm bands at the same pump power. Detailed analyses of these band intensity variations with input diode powers are given in Fig. S1(a) and (b) [ESI†]. For the 524 nm band, the green to red intensity ratio shows an increasing behaviour from low to high power, while for 661 nm band, it is high for low power and decreasing for the high power indicating that green band dominates at higher power. This dominant emission is explained by the proposed model which is given in the inset. The probability of decay rate is not the same for $^4S_{3/2}$ and $^4F_{9/2}$, therefore the excitation power limit is not the same for the both states. In order to explain the observed green and red emissions, let n_1 and n_2 be the no. of photons in the state $^4F_{7/2}$ and $^4F_{9/2}$, respectively. The decay rate $R(p)$ as a function of power from $^4F_{7/2}$ to $^4S_{3/2}$ increases rapidly at the moderate power (up to ~ 1 W) and $^4S_{3/2}$ state populated and the electronic transition from $^4S_{3/2}$ to $^4I_{15/2}$, which gives the intense green emission. Since, the phonon vibration energy and heat generated at surface of the sample is enhanced as the power enhances to the higher value and hence the decay probability of photons (say n_2) at $^4S_{3/2}$ to $^4F_{9/2}$ level increases slightly and electronic transition from $^4F_{9/2}$ to $^4I_{15/2}$, gives slightly improved red emission as clearly seen in the inset. Similar behaviour is reported in the literature for Er$^{3+}$/Yb$^{3+}$ co-doped SiO$_2$–Ta$_2$O$_5$ glass ceramics by Ferrari et al.44

3.4. Colloidal solution study

The emission and absorption spectra of the colloidal solution are shown in Fig. 10(a) and (b), respectively. The red emission bands show a very different intensity distribution under 976 nm excitation. In emission spectrum, red band shows variation in intensity distribution in comparison to green. This explains why the excited ions relax rapidly to the lower excited level in colloidal solution. The absorption spectrum of the

![Fig. 9](image)

Fig. 9 Variation of intensity of green ($^4S_{3/2}$ \rightarrow $^4I_{15/2}$) to red ($^4F_{9/2}$ \rightarrow $^4I_{15/2}$) band at different input laser powers of Er$^{3+}$/Yb$^{3+}$ doped Y$_2$Ti$_2$O$_7$ (EYYTO) phosphor. Inset shows the possible transitions for green and red emissions.

![Fig. 10](image)

Fig. 10 (a) Absorption spectrum (b) up-conversion spectrum of Er$^{3+}$/Yb$^{3+}$ doped Y$_2$Ti$_2$O$_7$ (EYYTO) colloidal nanoparticles.
colloidal solution is prepared by laser ablation method and shows a strong absorption band at ~1440 nm of Er3+ ion due to its \(^{4}I_{15/2} \rightarrow ^{4}I_{13/2}\) transition in Er\(^{3+}\). Due to limitations with our instrumental facilities in NIR region, we have been unable to record the emission spectra over the NIR range. A strong emission band from the colloidal solution is observed at 1.5 \(\mu\)m. It is also reported by Liu et al.\(^{50}\) for Er\(^{3+}/\)Yb\(^{3+}\) doped NaYF\(_4\) nanocubes under 976 nm laser diode excitation and found the highest optical amplification gain for 1.5 \(\mu\)m. The strong emission band occurs due to the efficient energy transfer from Yb\(^{3+}\) to Er\(^{3+}\) ion to give \(^{4}I_{13/2} \rightarrow ^{4}I_{15/2}\) transition. Though the absorption band due to Yb\(^{3+}\) has a higher absorption cross section than its Er\(^{3+}\) ion, its band at ~976 nm appears with weak intensity. The emission band at ~661 nm in Er\(^{3+}\) appears with large intensity on excitation with 976 nm radiation. It seems that Er\(^{3+}\) ions in \(^{4}I_{13/2}\) level absorb at 976 nm and populate \(^{4}F_{9/2}\) to give \(^{4}F_{9/2} \rightarrow ^{4}I_{15/2}\) transition emitting red photon.

3.5 Chromaticity of Er\(^{3+}/\)Yb\(^{3+}:\)Y\(_2\)Ti\(_2\)O\(_7\) and color tuning

The CIE (Commission Internationale de l’Eclairage) system gives the parameters \(x\) and \(y\) to demonstrate the color perception. This includes the hue and saturation on a two dimensional chromaticity diagram. Color perception changes from low input diode pump power i.e. from ~0.3 W to green to high power 2.4 W to give orangish-red, which is demonstrated in terms of the CIE coordinates, calculated at different powers. It was found that the color coordinates vary with pump power. Since up-conversion efficiency of rare earth doped YTO for different colors depends on excitation power. From Fig. 11 it is obvious that for low input power at ~0.3 W, the color coordinates \(x\), \(y\) are (0.37, 0.57) and for high input power (at ~2.4 W), they are (0.33, 0.65). The variation of CIE coordinates with different input diode powers are given in the Fig. S2 (ESI†) and Table S1(ESI†), respectively.

Fig. 11 CIE chromaticity diagram at different laser input power showing color tunability of Er\(^{3+}/\)Yb\(^{3+}\) doped Y\(_2\)Ti\(_2\)O\(_7\) (EYYTO) phosphor.

3.6 Luminescence decay study

The lifetime decay profile of EYYTO sample was recorded under 976 nm (\(\lambda_{\text{exc}}\)) excitation by monitoring the emission of green band at ~548 nm (\(\lambda_{\text{em}} = 548 \text{ nm}\)) is shown in Fig. 12. It is defined as time duration in which the population of higher energy level states is reduced by \(1/e\) of its initial population associated with involved transitions from higher energy to the lower energy state. The measured decay curves were fitted to the equation as \(I(t) = I_0e^{(-t/\tau)}\), where \(\tau\) is the life time of emitting level. The decay data is found to fit well with mono-exponential fitting having goodness of fit \(R^2 = 0.9968\). The calculated value of life time of \(4S_{3/2}\) level is found to be ~446 \(\mu\)s, which is slightly lower than the value reported by Ting et al.\(^{27}\) for Er\(^{3+}\) doped YTO. The shorter life value is attributed to the occurrence of energy transfer from Yb\(^{3+}\) \(\rightarrow\) Er\(^{3+}\) and the proposed energy transfer processes are quite reasonable for the EYYTO sample.

In last few years several results have been reported for different Er\(^{3+}\) or Er\(^{3+}/\)Yb\(^{3+}\) co-doped systems widely studied through up-conversion processes (i.e., BaTiO\(_3\), TiO\(_2\), Y\(_2\)O\(_3\), etc.).\(^{51,52}\) YTO shows comparable phonon frequency to the other hosts like BaTiO\(_3\), TiO\(_2\) and Y\(_2\)O\(_3\) has a higher thermal and mechanical stability, higher refractive index and wider band gap which opens up its broad and multifunctional applicability. Crystallinity appears in Er\(^{3+}\) doped TiO\(_2\) and BaTiO\(_3\) samples at ~500 and 700 °C annealing temperature, respectively. Reports show the presence of anatase and rutile phases for Er\(^{3+}\) doped TiO\(_2\) host between 500–1000 °C annealing temperatures. Optimum up-conversion emission intensity is found at around ~800 °C for TiO\(_2\) host and increases with annealing temperature in BaTiO\(_3\). Recently luminescence properties of Eu\(^{3+}\) doped Y\(_2\)Ti\(_2\)O\(_7\) have been reported via solvothermal process, particles show amorphous nature up to ~750 °C annealing temperature.\(^{53}\) The present EYYTO phosphor shows tunable up-conversion emission and high crystallinity. This material can be used extensively used for opto-electronic device applications. Also less effort is made to prepare colloidal solution of EYYTO phosphor sample. This solution can

Fig. 12 Luminescence decay curve of Er\(^{3+}/\)Yb\(^{3+}\) doped Y\(_2\)Ti\(_2\)O\(_7\) (EYYTO) phosphor (\(\lambda_{\text{em}} = 548\) nm, \(\lambda_{\text{exc}} = 976\) nm).
be easily dispersed in polymer thin films and it can be coated on solar cell device for enhancing the solar cell efficiency. The colloidal solution will be further prepared at different excitation powers and are studied for their toxicity and cytotoxicity in forthcoming years.

4. Conclusions

Er\(^{3+}/\)Yb\(^{3+}\) co-doped yttrium titannate nanophosphors were prepared using solid state reaction route and their comparative structural and up-conversion properties were characterized. Strong green and red emission transitions were observed at ~524, 548 and 661 nm which originated from electronic transitions \(^4H\(_{11/2}\) \rightarrow ^4I\(_{15/2}\), ^4S\(_{3/2}\) \rightarrow ^4I\(_{15/2}\) and ^4F\(_{9/2}\) \rightarrow ^4I\(_{15/2}\) \) of Er\(^{3+}\), respectively. Power dependence studies of these bands, input laser power which dictates the color tunability of the optical communication systems. The CIE coordinate varies with slightly smaller life time value of ^4S\(_{3/2}\) is attributed to energy transitions (\(^2H\(_{11/2}\) \rightarrow ^4I\(_{15/2}\), ^4S\(_{3/2}\) \rightarrow ^4I\(_{15/2}\) and ^4F\(_{9/2}\) \rightarrow ^4I\(_{15/2}\) \) of Er\(^{3+}\), respectively. Power dependence studies of these bands, infer that they arise through a two photon absorption process. The PL properties of Er\(^{3+}/\)Yb\(^{3+}\) doped samples prepared via laser ablation method shows the dominance of red band over green band. It also shows a strong absorption band near 1.45 μm, which will be useful for possible laser materials in optical communication systems. The CIE coordinate varies with input laser power which dictates the color tunability of the material. Photoluminescence decay of green band at ~548 nm is studied and found to be mono-exponential in nature. The slightly smaller life time value of ^4S\(_{3/2}\) is attributed to energy transfer from Yb\(^{3+}\) \rightarrow Er\(^{3+}\) and inhomogeneity present in the Er\(^{3+}/\)Yb\(^{3+}\) doped YTO host.

Acknowledgements

Authors (BPS, AKP and RKS) acknowledge financial support from University Grant Commission (UGC) in the form of a fellowship. Authors acknowledge Dr Ranjan K. Singh, Dept. of Physics, BHU, Varanasi, for providing the micro-Raman facility and Dr R. S. Ningthoujam (BARC) for valuable discussions.

References

32. (a) B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, USA, 1959; (b) A. K. Parchur and R. S. Ningthoujam, Dalton Trans., 2011, 40, 7590.
33. J. Rodriguez–Carvajal, FULLPROF a Rietveld and pattern matching analysis program, Laboratoire Leon Brillouin (CEA–CRNS), Paris France.

